Financial technology dalam koperasi : Dimensi sosio ekonomi dan dimensi kinerja yang diharapkan (performance expectancy) nasabah
Main Article Content
Abstract
This research aims to analyze the socio-economic dimensions and performance
expectations that affect customers using cooperative fintech. This research was carried
out at Credit Union Mekar Kasih, which already uses fintech and serves a wide area in
South and West Sulawesi. The sample amounted to 200 respondents with a simple random
sampling technique. Data collection did by survey method. Data were analyzed using PLSStructural Equation Modeling (SEM). The results show that the socio-economic
dimensions that affect customers using fintech in cooperatives are revenue, occupation,
space or distance of the customer's domicile with financial institutions, and education. The
socio-economic dimension can be shortened to ROSE. The dimensions of performance
expectancy that affect the use of fintech include cost efficiency (cost efficiency), residual
income (residual income), ability to disburse loans/liquidity (ability to disburse loans),
time efficiency, and environmentally friendly/paperless). The performance dimension of
customer expectations is abbreviated to CRATE. The use of fintech is seen based on
transaction traffic, the number of users, and changes in the structure of outstanding loans
and bad loans.
Article Details
References
Amaro, S., & Duarte, P. (2015). An integrative model of consumers’ intentions to purchase travel
online. Tourism Management, 46, 64–79.
Azirah, N. (2018). Pengaruh kemampuan finansial dan pengetahuan finansial terhadap persepsi
kemudahan dan perilaku penggunaan uang elektronik di Kota Makassar.
Davis, C. F. (1989). The evidential force of religious experience.
Dorfleitner, G., Hornuf, L., Schmitt, M., & Weber, M. (2017). The fintech market in Germany (pp. 13–
. Springer.
F.Rante, T. (2020). Credit union mekar kasih. Digitalisasi credit union.
Hadad, M. D. (2017). Financial technology (fintech) di Indonesia. Kuliah Umum Tentang Fintech,
Indonesia Banking School, 1–17.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. (2010). Multivariate Data
Analysis: Pearson Education. Upper Saddle River, New Jersey.
Huei, C. T., Cheng, L. S., Seong, L. C., Khin, A. A., & Bin, R. L. L. (2018). Preliminary study on
consumer attitude towards fintech products and services in Malaysia. International Journal of
Engineering & Technology, 7(2.29), 166–169.
Jiménez, J. R. Z., & Díaz, I. A. (2019). Educational level and Internet banking. Journal of Behavioral
and Experimental Finance, 22, 31–40.
Jugurnath, B., Bissessur, R., Ramtohul, P., & Mootooganagen, R. (2018). Fintech and digital banking:
Perception and usage in Mauritius, a logistic regression approach. The 5th IBSM International
Conference on Business, Management and Accounting, 19–21.
Lu, Y., Yuan, T., Wang, W., & Kannan, K. (2011). Concentrations and assessment of exposure to
siloxanes and synthetic musks in personal care products from China. Environmental Pollution,
(12), 3522–3528.
Marpaung, O., Purba, D. M., & Maesaroh, S. (2021). Analisis faktor yang mempengaruhi penggunaan
aplikasi fintechdan dampaknya terhadap literasi keuangan. Jurnal Akuntansi, 10(1), 98–106.
Rizal, M., Maulina, E., & Kostini, N. (2018). Fintech As One Of The Financing Solutions For SMEs.
Jurnal Pemikiran Dan Penelitian Administrasi Bisnis Dan Kewirausahaan, 3(2), 89–100.
Venkatesh, V., Morris, M. G., & Ackerman, P. L. (2000). A longitudinal field investigation of gender
differences in individual technology adoption decision-making processes. Organizational
Behavior and Human Decision Processes, 83(1), 33–60.
Wahjono, E. S. I., & Dkk, M. S. (2020). Pengantar Bisnis: Edisi 2 (Vol. 2). Prenada Media.
World Economic Forum. (2017). Economic index (online).